Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Front Pharmacol ; 15: 1376638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659583

RESUMO

Introduction: One of the primary obstacles faced by individuals with advanced colorectal cancer (CRC) is the potential development of acquired chemoresistance as the disease advances. Studies have indicated a direct association between elevated levels of miR-92a-3p and the progression, metastasis, and chemoresistance observed in CRC. We proposed that miR-92a-3p impairs FOLFOX (fluorouracil/oxaliplatin) chemotherapy response by upregulating the expression of chemoresistance biomarker genes through the activation of ß-catenin and epithelial-mesenchymal transition (EMT). These FOLFOX biomarker genes include the pyrimidine biosynthesis pathway genes dihydropyrimidine dehydrogenase (DPYD), thymidylate synthase (TYMS), methylenetetrahydrofolate reductase (MTHFR), and the genes encoding the DNA repair complexes subunits ERCC1 and ERCC2, and XRCC1. Methods: To assess this, we transfected SW480 and SW620 colon cancer cell lines with miR-92a-3p mimics and then quantified the expression of DPYD, TYMS, MTHFR, ERCC1, ERCC2, and XRCC1, the expression of EMT markers and transcription factors, and activation of ß-catenin. Results and discussion: Our results reveal that miR-92a-3p does not affect the expression of DPYD, TYMS, MTHFR, and ERCC1. Furthermore, even though miR-92a-3p affects ERCC2, XRCC1, E-cadherin, and ß-catenin mRNA levels, it has no influence on their protein expression. Conclusion: We found that miR-92a-3p does not upregulate the expression of proteins of DNA-repair pathways and other genes involved in FOLFOX chemotherapy resistance.

2.
Ecancermedicalscience ; 18: 1685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566759

RESUMO

Introduction: The incidence of squamous carcinoma of the oropharynx (OPSCC) has presented an increase worldwide, a fact that occurs along with a phenomenon of epidemiological transition, whose pathogenesis is linked to human papilloma virus (HPV) in a significant part of the cases. Published evidence at the Latin American level is scarce. The present study aims to evaluate the epidemiological and clinical characteristics of patients with oropharyngeal cancer treated in a public oncology reference centre in Chile. Methodology: A cross-sectional study was carried out. Patients with histological confirmation of OPSCC aged 18 years or older, referred to the National Cancer Institute of Chile between 2012 and 2023 were included. The association with HPV was determined by immunohistochemistry for p16. Results: 178 patients were analysed, most of them in locoregionally advanced stages involving the palatine tonsil. Seventy-seven percent were male, with a median age of 60 years. Sixty-seven percent of patients were positive for p16, with a progressive increase to 85% in the last 2 years of the study. The p16(+) patients were younger and had fewer classical risk factors. Primary treatment was radiotherapy in 94% of patients. Conclusion: The epidemiological profile of patients with OPSCC treated in a Chilean public oncology referral centre reflects the epidemiological transition observed in developed countries. This change justifies the need to adapt health policies and conduct research that considers the characteristics of this new epidemiological profile.

3.
PLoS One ; 19(4): e0302436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662786

RESUMO

Severe cases of COVID-19 are characterized by development of acute respiratory distress syndrome (ARDS). Water accumulation in the lungs is thought to occur as consequence of an exaggerated inflammatory response. A possible mechanism could involve decreased activity of the epithelial Na+ channel, ENaC, expressed in type II pneumocytes. Reduced transepithelial Na+ reabsorption could contribute to lung edema due to reduced alveolar fluid clearance. This hypothesis is based on the observation of the presence of a novel furin cleavage site in the S protein of SARS-CoV-2 that is identical to the furin cleavage site present in the alpha subunit of ENaC. Proteolytic processing of αENaC by furin-like proteases is essential for channel activity. Thus, competition between S protein and αENaC for furin-mediated cleavage in SARS-CoV-2-infected cells may negatively affect channel activity. Here we present experimental evidence showing that coexpression of the S protein with ENaC in a cellular model reduces channel activity. In addition, we show that bidirectional competition for cleavage by furin-like proteases occurs between 〈ENaC and S protein. In transgenic mice sensitive to lethal SARS-CoV-2, however, a significant decrease in gamma ENaC expression was not observed by immunostaining of lungs infected as shown by SARS-CoV2 nucleoprotein staining.


Assuntos
COVID-19 , Canais Epiteliais de Sódio , Furina , Camundongos Transgênicos , Proteólise , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Canais Epiteliais de Sódio/metabolismo , Animais , Humanos , Camundongos , Furina/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Pulmão/metabolismo , Pulmão/virologia , Pulmão/patologia , Células HEK293
4.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542313

RESUMO

The RE-1 silencing transcription factor (REST) is a repressor factor related to neuroendocrine prostate cancer (PCa) (NEPC), a poor prognostic stage mainly associated with castration-resistant PCa (CRPC). NEPC is associated with cell transdifferentiation and the epithelial-mesenchymal transition (EMT) in cells undergoing androgen deprivation therapy (ADT) and enzalutamide (ENZ). The effect of REST overexpression in the 22rv1 cell line (xenograft-derived prostate cancer) on EMT, migration, invasion, and the viability for ENZ was evaluated. EMT genes, Twist and Zeb1, and the androgen receptor (AR) were evaluated through an RT-qPCR and Western blot in nuclear and cytosolic fractions of REST-overexpressing 22rv1 cells (22rv1-REST). The migratory and invasive capacities of 22rv1-REST cells were evaluated via Transwell® assays with and without Matrigel, respectively, and their viability for enzalutamide via MTT assays. The 22rv1-REST cells showed decreased nuclear levels of Twist, Zeb1, and AR, and a decreased migration and invasion and a lower viability for ENZ compared to the control. Results were expressed as the mean + SD of three independent experiments (Mann-Whitney U test, Kruskal-Wallis, Tukey test). REST behaves like a tumor suppressor, decreasing the aggressiveness of 22rv1 cells, probably through the repression of EMT and the neuroendocrine phenotype. Furthermore, REST could represent a response marker to ENZ in PCa patients.


Assuntos
Benzamidas , Nitrilas , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Antagonistas de Androgênios , Fatores de Transcrição , Linhagem Celular Tumoral , Receptores Androgênicos/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias de Próstata Resistentes à Castração/patologia
5.
Mol Biotechnol ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400988

RESUMO

A strategy to increase the transfection efficiency of chitosan-based nanoparticles for gene therapy is by adding nuclear localization signals through karyophilic peptides. Here, the effect of the length and sequence of these peptides and their interaction with different plasmids on the physical characteristics and biological functionality of nanoparticles is reported. The karyophilic peptides (P1 or P2) were used to assemble nanoparticles by complex coacervation with pEGFP-N1, pQBI25 or pSelect-Zeo-HSV1-tk plasmids, and chitosan. Size, polydispersity index, zeta potential, and morphology, as well as in vitro nucleus internalization and transfection capability of nanoparticles were determined. The P2 nanoparticles resulted smaller compared to the ones without peptides or P1 for the three plasmids. In general, the addition of either P1 or P2 did not have a significant impact on the polydispersity index and the zeta potential. P1 and P2 nanoparticles were localized in the nucleus after 30 min of exposure to HeLa cells. Nevertheless, the presence of P2 in pEGFP-N1 and pQBI25 nanoparticles raised their capability to transfect and express the green fluorescent protein. Thus, karyophilic peptides are an efficient tool for the optimization of nonviral vectors for gene delivery; however, the sequence and length of peptides have an impact on characteristics and functionality of nanoparticles.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38269409

RESUMO

KS-WNK1 is an isoform of WNK1 kinase that is predominantly found in the distal convoluted tubule of the kidney. The precise physiological function of KS-WNK1 remains unclear. Some studies suggest that it could play a role in regulating potassium renal excretion by modulating the activity of the Na+-Cl- cotransporter (NCC). However, changes in the potassium diet from normal to high failed to reveal a role for KS-WNK1, but under a normal potassium diet, the expression of KS-WNK1 is negligible. It is only detectable when mice are exposed to a low potassium diet. In this study, we investigated the role of KS-WNK1 in regulating potassium excretion under extreme changes in potassium intake. After following a zero-potassium diet (0KD) for 10 days, KS-WNK1-/- mice had lower plasma levels of K+ and Cl-, while exhibiting higher urinary excretion of Na+, Cl-, and K+ compared to KS-WNK1+/+ mice. After 10 days of 0KD or normal-potassium diet (NKD), all mice were challenged with a high-potassium diet (HKD). Plasma K+ levels markedly increased after the HKD challenge only in mice previously fed with 0KD, regardless of genotype. KSWNK1+/+ mice adapt better to HKD-challenge than KS-WNK1-/- mice after a potassium-retaining state. The difference in the pNCC/NCC ratio between KS-WNK1+/+ and KS-WNK1-/- mice after 0KD and HKD indicates a role for KS-WNK1 in both, NCC phosphorylation and dephosphorylation. These observations show that KS-WNK1 helps the DCT to respond to extreme changes in potassium intake, such as those occurring in wildlife.

7.
Am J Physiol Renal Physiol ; 326(2): F285-F299, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096266

RESUMO

Vasopressin regulates water homeostasis via the V2 receptor in the kidney at least in part through protein kinase A (PKA) activation. Vasopressin, through an unknown pathway, upregulates the activity and phosphorylation of Na+-Cl- cotransporter (NCC) and Na+-K+-2Cl- cotransporter 2 (NKCC2) by Ste20-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1), which are regulated by the with-no-lysine kinase (WNK) family. Phosphorylation of WNK4 at PKA consensus motifs may be involved. Inhibitor 1 (I1), a protein phosphatase 1 (PP1) inhibitor, may also play a role. In human embryonic kidney (HEK)-293 cells, we assessed the phosphorylation of WNK4, SPAK, NCC, or NKCC2 in response to forskolin or desmopressin. WNK4 and cotransporter phosphorylation were studied in desmopressin-infused WNK4-/- mice and in tubule suspensions. In HEK-293 cells, only wild-type WNK4 but not WNK1, WNK3, or a WNK4 mutant lacking PKA phosphorylation motifs could upregulate SPAK or cotransporter phosphorylation in response to forskolin or desmopressin. I1 transfection maximized SPAK phosphorylation in response to forskolin in the presence of WNK4 but not of mutant WNK4 lacking PP1 regulation. We observed direct PP1 regulation of NKCC2 dephosphorylation but not of NCC or SPAK in the absence of WNK4. WNK4-/- mice with desmopressin treatment did not increase SPAK/OSR1, NCC, or NKCC2 phosphorylation. In stimulated tubule suspensions from WNK4-/- mice, upregulation of pNKCC2 was reduced, whereas upregulation of SPAK phosphorylation was absent. These findings suggest that WNK4 is a central node in which kinase and phosphatase signaling converge to connect cAMP signaling to the SPAK/OSR1-NCC/NKCC2 pathway.NEW & NOTEWORTHY With-no-lysine kinases regulate the phosphorylation and activity of the Na+-Cl- and Na+-K+-2Cl- cotransporters. This pathway is modulated by arginine vasopressin (AVP). However, the link between AVP and WNK signaling remains unknown. Here, we show that AVP activates WNK4 through increased phosphorylation at putative protein kinase A-regulated sites and decreases its dephosphorylation by protein phosphatase 1. This work increases our understanding of the signaling pathways mediating AVP actions in the kidney.


Assuntos
Arginina Vasopressina , Proteínas Serina-Treonina Quinases , Camundongos , Humanos , Animais , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Células HEK293 , Arginina Vasopressina/metabolismo , Cotransportadores de K e Cl- , Desamino Arginina Vasopressina , Colforsina , Proteína Fosfatase 1/metabolismo , Rim/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
8.
Am J Physiol Renal Physiol ; 326(1): F39-F56, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37881876

RESUMO

The with-no-lysine kinase 4 (WNK4)-sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway mediates activating phosphorylation of the furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and the thiazide-sensitive NaCl cotransporter (NCC). The commonly used pT96/pT101-pNKCC2 antibody cross-reacts with pT53-NCC in mice on the C57BL/6 background due to a five amino acid deletion. We generated a new C57BL/6-specific pNKCC2 antibody (anti-pT96-NKCC2) and tested the hypothesis that the WNK4-SPAK/OSR1 pathway strongly regulates the phosphorylation of NCC but not NKCC2. In C57BL/6 mice, anti-pT96-NKCC2 detected pNKCC2 and did not cross-react with NCC. Abundances of pT96-NKCC2 and pT53-NCC were evaluated in Wnk4-/-, Osr1-/-, Spak-/-, and Osr1-/-/Spak-/- mice and in several models of the disease familial hyperkalemic hypertension (FHHt) in which the CUL3-KLHL3 ubiquitin ligase complex that promotes WNK4 degradation is dysregulated (Cul3+/-/Δ9, Klhl3-/-, and Klhl3R528H/R528H). All mice were on the C57BL/6 background. In Wnk4-/- mice, pT53-NCC was almost absent but pT96-NKCC2 was only slightly lower. pT53-NCC was almost absent in Spak-/- and Osr1-/-/Spak-/- mice, but pT96-NKCC2 abundance did not differ from controls. pT96-NKCC2/total NKCC2 was slightly lower in Osr1-/- and Osr1-/-/Spak-/- mice. WNK4 expression colocalized not only with NCC but also with NKCC2 in Klhl3-/- mice, but pT96-NKCC2 abundance was unchanged. Consistent with this, furosemide-induced urinary Na+ excretion following thiazide treatment was similar between Klhl3-/- and controls. pT96-NKCC2 abundance was also unchanged in the other FHHt mouse models. Our data show that disruption of the WNK4-SPAK/OSR1 pathway only mildly affects NKCC2 phosphorylation, suggesting a role for other kinases in NKCC2 activation. In FHHt models NKCC2 phosphorylation is unchanged despite higher WNK4 abundance, explaining the thiazide sensitivity of FHHt.NEW & NOTEWORTHY The renal cation cotransporters NCC and NKCC2 are activated following phosphorylation mediated by the WNK4-SPAK/OSR1 pathway. While disruption of this pathway strongly affects NCC activity, effects on NKCC2 activity are unclear since the commonly used phospho-NKCC2 antibody was recently reported to cross-react with phospho-NCC in mice on the C57BL/6 background. Using a new phospho-NKCC2 antibody specific for C57BL/6, we show that inhibition or activation of the WNK4-SPAK/OSR1 pathway in mice only mildly affects NKCC2 phosphorylation.


Assuntos
Proteínas Serina-Treonina Quinases , Pseudo-Hipoaldosteronismo , Animais , Camundongos , Furosemida , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Tiazidas
9.
Life Sci ; 333: 122166, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827232

RESUMO

Ovarian cancer presents a significant challenge due to its high rate of chemoresistance, which complicates the effectiveness of drug-response therapy. This study provides a comprehensive metabolomic analysis of ovarian cancer cell lines OVCAR-3 and SK-OV-3, characterizing their distinct metabolic landscapes. Metabolomics coupled with chemometric analysis enabled us to discriminate between the metabolic profiles of these two cell lines. The OVCAR-3 cells, which are sensitive to doxorubicin (DOX), exhibited a preference for biosynthetic pathways associated with cell proliferation. Conversely, DOX-resistant SK-OV-3 cells favored fatty acid oxidation for energy maintenance. Notably, a marked difference in glutathione (GSH) metabolism was observed between these cell lines. Our investigations further revealed that GSH depletion led to a profound change in drug sensitivity, inducing a shift from a cytostatic to a cytotoxic response. The results derived from this comprehensive metabolomic analysis offer potential targets for novel therapeutic strategies to overcome drug resistance. Our study suggests that targeting the GSH pathway could potentially enhance chemotherapy's efficacy in treating ovarian cancer.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Apoptose , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Glutationa/metabolismo
10.
Front Physiol ; 14: 1100522, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875042

RESUMO

The activity of the Na+-Cl- cotransporter (NCC) in the distal convoluted tubule (DCT) is finely tuned by phosphorylation networks involving serine/threonine kinases and phosphatases. While much attention has been paid to the With-No-lysine (K) kinase (WNK)- STE20-related Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive kinase 1 (OSR1) signaling pathway, there remain many unanswered questions regarding phosphatase-mediated modulation of NCC and its interactors. The phosphatases shown to regulate NCC's activity, directly or indirectly, are protein phosphatase 1 (PP1), protein phosphatase 2A (PP2A), calcineurin (CN), and protein phosphatase 4 (PP4). PP1 has been suggested to directly dephosphorylate WNK4, SPAK, and NCC. This phosphatase increases its abundance and activity when extracellular K+ is increased, which leads to distinct inhibitory mechanisms towards NCC. Inhibitor-1 (I1), oppositely, inhibits PP1 when phosphorylated by protein kinase A (PKA). CN inhibitors, like tacrolimus and cyclosporin A, increase NCC phosphorylation, giving an explanation to the Familial Hyperkalemic Hypertension-like syndrome that affects some patients treated with these drugs. CN inhibitors can prevent high K+-induced dephosphorylation of NCC. CN can also dephosphorylate and activate Kelch-like protein 3 (KLHL3), thus decreasing WNK abundance. PP2A and PP4 have been shown in in vitro models to regulate NCC or its upstream activators. However, no studies in native kidneys or tubules have been performed to test their physiological role in NCC regulation. This review focuses on these dephosphorylation mediators and the transduction mechanisms possibly involved in physiological states that require of the modulation of the dephosphorylation rate of NCC.

11.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499245

RESUMO

Prostate cancer (PCa) is a leading cause of cancer death in men, worldwide. Mortality is highly related to metastasis and hormone resistance, but the molecular underlying mechanisms are poorly understood. We have studied the presence and role of cancer stem cells (CSCs) and the Epithelial-Mesenchymal transition (EMT) in PCa, using both in vitro and in vivo models, thereby providing evidence that the stemness-mesenchymal axis seems to be a critical process related to relapse, metastasis and resistance. These are complex and related processes that involve a cooperative action of different cancer cell subpopulations, in which CSCs and mesenchymal cancer cells (MCCs) would be responsible for invading, colonizing pre-metastatic niches, initiating metastasis and an evading treatments response. Manipulating the stemness-EMT axis genes on the androgen receptor (AR) may shed some light on the effect of this axis on metastasis and castration resistance in PCa. It is suggested that the EMT gene SNAI2/Slug up regulates the stemness gene Sox2, and vice versa, inducing AR expression, promoting metastasis and castration resistance. This approach will provide new sight about the role of the stemness-mesenchymal axis in the metastasis and resistance mechanisms in PCa and their potential control, contributing to develop new therapeutic strategies for patients with metastatic and castration-resistant PCa.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias da Próstata , Masculino , Humanos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/genética , Neoplasias da Próstata/metabolismo , Orquiectomia , Metástase Neoplásica
12.
BMC Infect Dis ; 22(1): 644, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883062

RESUMO

BACKGROUND: The ability of SARS-CoV-2 to remain in asymptomatic individuals facilitates its dissemination and makes its control difficult. OBJECTIVE: To establish a cohort of asymptomatic individuals, change to the symptomatic status, and determine the most frequent clinical manifestations.  METHODS: Between April 9 and August 9, 2020, molecular diagnosis of SARS-CoV-2 infection was confirmed in 154 asymptomatic people in contact with subjects diagnosed with COVID-19. Nasopharyngeal swabs were performed on these people in different hospitals in Córdoba, the Caribbean area of Colombia. The genes E, RdRp, and N were amplified with RT-qPCR. Based on the molecular results and the Cq values, the patients were subsequently followed up through telephone calls to verify their health conditions. RESULTS: Overall, of 154 asymptomatic individuals, 103 (66.9%) remained asymptomatic, and 51 (33.1%) changed to symptomatic. The most frequent clinical manifestations in young people were anosmia and arthralgia. Adults showed cough, ageusia, and odynophagia; in the elderly were epigastralgia, dyspnea, and headache. Mortality was 8%. CONCLUSIONS: A proportion of 33% of presymptomatic individuals was found, of which four of them died. This high rate could indicate a silent transmission, contributing significantly to the epidemic associated with SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Adolescente , Adulto , Idoso , COVID-19/diagnóstico , COVID-19/epidemiologia , Colômbia/epidemiologia , Tosse , Humanos , Saúde Pública , SARS-CoV-2/genética
13.
Kidney Int ; 102(5): 1030-1041, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35870644

RESUMO

Low potassium intake activates the kidney sodium-chloride cotransporter (NCC) whose phosphorylation and activity depend on the With-No-Lysine kinase 4 (WNK4) that is inhibited by chloride binding to its kinase domain. Low extracellular potassium activates NCC by decreasing intracellular chloride thereby promoting chloride dissociation from WNK4 where residue L319 of WNK4 participates in chloride coordination. Since the WNK4-L319F mutant is constitutively active and chloride-insensitive in vitro, we generated mice harboring this mutation that displayed slightly increased phosphorylated NCC and mild hyperkalemia when on a 129/sv genetic background. On a low potassium diet, upregulation of phosphorylated NCC was observed, suggesting that in addition to chloride sensing by WNK4, other mechanisms participate which may include modulation of WNK4 activity and degradation by phosphorylation of the RRxS motif in regulatory domains present in WNK4 and KLHL3, respectively. Increased levels of WNK4 and kidney-specific WNK1 and phospho-WNK4-RRxS were observed in wild-type and WNK4L319F/L319F mice on a low potassium diet. Decreased extracellular potassium promoted WNK4-RRxS phosphorylation in vitro and ex vivo as well. These effects might be secondary to intracellular chloride depletion, as reduction of intracellular chloride in HEK293 cells increased phospho-WNK4-RRxS. Phospho-WNK4-RRxS levels were increased in mice lacking the Kir5.1 potassium channel, which presumably have decreased distal convoluted tubule intracellular chloride. Similarly, phospho-KLHL3 was modulated by changes in intracellular chloride in HEK293 cells. Thus, our data suggest that multiple chloride-regulated mechanisms are responsible for NCC upregulation by low extracellular potassium.


Assuntos
Hipopotassemia , Simportadores de Cloreto de Sódio , Animais , Humanos , Camundongos , Cloretos/metabolismo , Células HEK293 , Hipopotassemia/genética , Hipopotassemia/metabolismo , Túbulos Renais Distais/metabolismo , Fosforilação , Potássio/metabolismo , Canais de Potássio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Simportadores de Cloreto de Sódio/metabolismo
14.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682554

RESUMO

Secreted protein acidic and rich in cysteine (SPARC), or osteonectin, is a matricellular protein that modulates interactions between cells and their microenvironment. SPARC is expressed during extracellular matrix remodeling and is abundant in bone marrow and high-grade prostate cancer (PCa). In PCa, SPARC induces changes associated with epithelial-mesenchymal transition (EMT), enhancing migration and invasion and increasing the expression of EMT transcriptional factor Zinc finger E-box-binding homeobox 1 (ZEB1), but not Zinc finger protein SNAI1 (Snail) or Zinc finger protein SNAI2 (Slug). It is unknown whether the SPARC-induced downregulation of E-cadherin in PCa cells depends on ZEB1. Several integrins are mediators of SPARC effects in cancer cells. Because integrin signaling can induce EMT programs, we hypothesize that SPARC induces E-cadherin repression through the activation of integrins and ZEB1. Through stable knockdown and the overexpression of SPARC in PCa cells, we demonstrate that SPARC downregulates E-cadherin and increases vimentin, ZEB1, and integrin ß3 expression. Knocking down SPARC in PCa cells decreases the tyrosine-925 phosphorylation of FAK and impairs focal adhesion formation. Blocking integrin αvß3 and silencing ZEB1 revert both the SPARC-induced downregulation of E-cadherin and cell migration enhancement. We conclude that SPARC induces E-cadherin repression and enhances PCa cell migration through the integrin αvß3/ZEB1 signaling pathway.


Assuntos
Neoplasias da Próstata , Fatores de Transcrição , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Integrina alfaVbeta3/metabolismo , Masculino , Invasividade Neoplásica , Osteonectina/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
15.
FASEB J ; 36(3): e22190, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35147994

RESUMO

We demonstrated that serpinA3c/k relocates from the cytoplasm to the apical tubular membrane (ATM) in chronic kidney disease (CKD), suggesting its secretion in luminal space in pathophysiological contexts. Here, we studied serpinA3c/k expression and secretion under different stressful conditions in vitro and in vivo. HEK-293 cells were transfected with a FLAG-tagged serpinA3c/k clone and exposed to H2 O2 or starvation. Both stressors induced serpinA3c/k secretion but with a higher molecular weight. Glycanase treatment established that serpinA3c/k is glycosylated. Site-directed mutagenesis for each of the four glycosylation sites was performed. During cellular stress, serpinA3c/k secretion increased with each mutant except in the quadruple mutant. In rats and patients suffering acute kidney injury (AKI), an atypical urinary serpinA3c/k excretion (uSerpinA3c/k) was observed. In rats with AKI, the greater the induced kidney damage, the greater the uSerpinA3 c/k, together with relocation toward ATM. Our findings show that: (1) serpinA3c/k is glycosylated and secreted, (2) serpinA3c/k secretion increases during cellular stress, (3) its appearance in urine reveals a pathophysiological state, and (4) urinary serpinA3 excretion could become a potential biomarker for AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Estresse Fisiológico , alfa 1-Antiquimotripsina/metabolismo , Injúria Renal Aguda/urina , Animais , Glicosilação , Células HEK293 , Humanos , Masculino , Mutação , Ratos , alfa 1-Antiquimotripsina/genética , alfa 1-Antiquimotripsina/urina
16.
Adv Exp Med Biol ; 1393: 51-64, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587301

RESUMO

Prostate cancer (PCa) incidence has increased during the last decades, becoming one of the leading causes of death by cancer in men worldwide. During an extended period of prostate cancer, malignant cells are androgen-sensitive being testosterone the main responsible for tumor growth. Accordingly, treatments blocking production and action of testosterone are mostly used. However, during disease progression, PCa cells become androgen insensitive producing a castration-resistant stage with a worse prognosis. Overcoming castration-resistant prostate cancer (CRPC) has become a great challenge in the management of this disease. In the search for molecular pathways leading to therapy resistance, the epithelial-mesenchymal transition (EMT), and particularly the transcription factors zinc finger E-box-binding homeobox 1 (Zeb1) and zinc finger protein SNAI1 (Snail), master genes of the EMT, have shown to have pivotal roles. Also, the discovery that cancer stem cells (CSCs) can be generated de novo from their non-CSCs counterpart has led to the question whereas these EMT transcription factors could be implicated in this dynamic conversion between non-CSC and CSC. In this review, we analyze evidence supporting the idea that Zeb1 and Snail induce cell malignancy and cancer stem cell phenotype in prostate cells, increasing androgen synthesis capacity and therapy resistance.


Assuntos
Neoplasias da Próstata , Fatores de Transcrição da Família Snail , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Humanos , Masculino , Androgênios/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/patologia , Fenótipo , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Testosterona/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Fatores de Transcrição da Família Snail/metabolismo
17.
Trans R Soc Trop Med Hyg ; 116(2): 139-147, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34185868

RESUMO

BACKGROUND: Serological evaluation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an alternative that allows us to determine the prevalence and dynamics of this infection in populations. The goal of this study was to determine the clinical and sociodemographic dynamics of SARS-CoV-2 infection in a region of the Colombian Caribbean. METHODS: Between July and November 2020, a cross-sectional observational study was carried out in Córdoba, located in northeast Colombia in the Caribbean area. Eight municipalities with the largest populations were chosen and 2564 blood samples were taken. A commercial enzyme-linked immunosorbent assay was used with the recombinant protein antigen N of SARS-CoV-2. The people included in the study were asked for sociodemographic and clinical data, which were analysed by statistical methods. RESULTS: A seroprevalence of 40.8% was obtained for SARS-CoV-2 in the Córdoba region. In the bivariate analysis, no differences were observed in seropositivity against SARS-CoV-2 for gender or age range (p>0.05). Higher seropositivity was found in low socio-economic status and symptomatic patients (p<0.0001). A total of 30.7% of the asymptomatic patients were seropositive for SARS-CoV-2, which could be linked to the spread of this infection. In the multivariate analysis, seroconversion was related to poverty and clinical manifestations such as anosmia and ageusia (p<0.05). CONCLUSIONS: The high seropositivity in Córdoba is due to widespread SARS-CoV-2 in this population. The relationship between seropositivity and socio-economic status suggests a higher exposure risk to the virus caused by informal economic activities in low-income groups. Clinical manifestations such as anosmia and ageusia could be clinical predictors of infection by the new emergent coronavirus.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Cidades/epidemiologia , Colômbia/epidemiologia , Estudos Transversais , Humanos , Estudos Soroepidemiológicos
18.
Life (Basel) ; 13(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36675964

RESUMO

Toxins of the OA-group (okadaic acid, OA; dinophysistoxin-1, DTX-1) are the most prevalent in the fjords of southern Chile, and are characterized by their potential harmful effects on aquatic organisms. The present study was carried out to determine the acute toxicity of OA/DTX-1 on oxidative stress parameters in medaka (Oryzias latipes) larvae. Medaka larvae were exposed to different concentrations (1.0-30 µg/mL) of OA/DTX-1 for 96 h to determine the median lethal concentration. The LC50 value after 96 h was 23.5 µg/mL for OA and 16.3 µg/mL for DTX-1 (95% confidence interval, CI was 22.56, 24.43 for OA and 15.42, 17.17 for DTX-1). Subsequently, larvae at 121 hpf were exposed to acute doses (10, 15 and 20 µg/mL OA and 5.0, 7.5 and 11.0 µg/mL DTX-1) for 96 h and every 6 h the corresponding group of larvae was euthanized in order to measure the activity levels of biochemical biomarkers (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx; and glutathione reductase, GR) as well as the levels of oxidative damage (malondialdehyde, MDA; and carbonyl content). Our results showed that acute doses caused a decrease in SOD (≈25%), CAT (≈55%), and GPx and GR (≈35%) activities, while MDA levels and carbonyl content increased significantly at the same OA/DTX-1 concentrations. This study shows that acute exposure to OA-group toxins tends to simultaneously alter the oxidative parameters that induce sustained morphological damage in medaka larvae. DTX-1 stands out as producing greater inhibition of the antioxidant system, leading to increased oxidative damage in medaka larvae. Considering that DTX-1 is the most prevalent HAB toxin in southern Chile, these findings raise the possibility of an important environmental impact on the larval stages of different fish species present in the southern fjords of the South Pacific.

19.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1367676

RESUMO

Introducción: Los antibióticos betalactámicos son los más utilizados en el tratamiento de las infecciones urinarias en el Perú. La resistencia bacteriana se produce frecuentemente por la presencia de Betalactamasas de Espectro Extendido (BLEE) en enterobacterias. Objetivo: Determinar la multirresistencia en E. coli asociada a betalactamasas de espectro extendido en urocultivos de adultos que residen en la provincia de Tambopata-Madre De Dios. El estudio: Estudio no experimental, descriptivo, la detección y la confirmación de BLEE se realizó con la técnica de doble disco usando ceftazidima, cefotaxima, cefepime, aztreonam y amoxicilina más ácido clavulánico. La resistencia y susceptibilidad microbiana se identificó usando la técnica de disco de difusión. Hallazgos: Se aislaron 162 cepas de E. coli. Se identificaron cepas con resistencia a los antibióticos ampicilina (71%), trimetoprim sulfametoxazol (49%), ácido ciprofloxacino (37%), ácido nalidíxico (37%) y aztreonam (31%). Conclusión: Existe resistencia antimicrobiana mediada por cepas de E. coli productoras BLEE.


Background:Beta-lactamantibioticsarethemostusedinthe treatment of urinary infections in Peru. Bacterial resistance is frequently produced by the presence of Extended Spectrum Betalactamases (ESBL) in Enterobacteriaceae. To determine the multi-resistance inObjective:E. coliassociated to extended spectrum beta-lactamases in urine cultures from adults residing in the province of Tambopata-Madre De Dios. The study:Non-experimental, descriptive study, detection and confirmation of ESBLwas performed with the double disc technique using ceftazidime, cefotaxime, cefepime, aztreonam and amoxicillin plus clavulanic acid. Microbial resistance and susceptibility was identified using the diffusion disk technique. 162 strains of E. coliwere isolated. Strains Findings:withresistancetotheantibioticsampicillin(71%),trimethoprine sulfamethoxazole (49%), ciprofloxacin acid (37%), nalidixic acid (37%) andaztreonam(31%)wereidentified.Thereis Conclusion:antimicrobial resistance mediated by ESBL-producing strains of E. coli.

20.
Int J Radiat Biol ; 97(11): 1555-1562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34519609

RESUMO

BACKGROUND: GnRH analogs are widely used as neoadjuvant agents for radiotherapy in prostate cancer (PCa) patients, with well-documented effects in reducing tumor bulk and increasing progression-free survival. GnRH analogs act locally in the prostate by triggering apoptosis of PCa cells via activation of the GnRH receptor (GnRHR). During PCa progression, the distribution of GnRHR within the cell is altered, with reduced expression in the cell membrane and remaining sequestered in the endoplasmic reticulum. Pharmacoperone IN3 is able to relocalize GnRHR to the cell membrane. The aim of this study was to evaluate the effect of radiation on PCa cells pretreated with leuprolide, alone or in combination with IN3, as radiosensitizers. MATERIAL AND METHODS: PC3 and human PCa primary cell cultures were treated with IN3 for 24 h, followed by different doses of leuprolide for 48 h and, finally, single doses of radiation (3, 6, and 9 Gy). After radiation, cell survival, apoptosis, cell cycle distribution, and colony growth were evaluated. RESULTS: Radiation reduced cell survival and increased apoptosis in a dose-dependent manner. This effect was also directly related to leuprolide concentration. Pretreatment with IN3 enhanced apoptosis and decreased cell survival, also observing a higher proportion of cells arrested in G2. CONCLUSION: Neoadjuvant leuprolide increases radiation-mediated apoptosis of PCa cells. This effect was enhanced by pretreatment with pharmacoperone IN3. Clinical use of IN3 as a radiosensitizer combined with androgen deprivation therapy to improve survival of patients with PCa remains to be evaluated.


Assuntos
Neoplasias da Próstata , Antagonistas de Androgênios , Hormônio Liberador de Gonadotropina , Humanos , Leuprolida/farmacologia , Masculino , Próstata , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Radiossensibilizantes/farmacologia , Receptores LHRH
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...